Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Biotechnological production of the traditional petrochemical ethylene is presently being explored using yeasts as well as bacteria. In this study we quantify the specific ethylene production levels at different conditions in continuous (chemostat) cultivation of Saccharomyces cerevisae expressing the ethylene forming enzyme (EFE) from Pseudomonas syringae. RESULTS Our study shows that oxygen availability is an important factor for the ethylene formation. Maintaining a high percentage dissolved oxygen in the cultivation was found to be necessary to achieve maximal ethylene productivity. Even at oxygen levels high enough to sustain respiratory metabolism the ethylene formation was restricted. Oxygen was also important for sustaining a high respiratory rate and to re-oxidize the surplus of NADH that accompanies ethylene formation. By employing three different nitrogen sources we further found that the nitrogen source available can both improve and impair the ethylene productivity. Contrary to findings in batch cultures, using glutamate did not give a significant increase in specific ethylene production levels compared to the reference condition with ammonia, whereas a combination of glutamate and arginine resulted in a strongly diminished specific ethylene production. Furthermore, from cultivations at different dilution rates the ethylene formation was found to be coupled to growth rate. CONCLUSION To optimize the ethylene productivity in S. cerevisiae expressing a bacterial ethylene forming enzyme, controlling the oxygen availability and growth rate as well as employing an ideal nitrogen source is of importance. The effects of these factors as studied here provide a basis for an optimized process for ethylene production in S. cerevisiae.
منابع مشابه
Isolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae
In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...
متن کاملCharacterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture
Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...
متن کاملProduction and localization of beta-fructosidase in asynchronous and synchronous chemostat cultures of yeasts.
In synchronized continuous cultures of Saccharomyces cerevisiae CBS 8066, the production of the extracellular invertase (EC 3.2.1.26) showed a cyclic behavior that coincided with the budding cycle. The invertase activity increased during bud development and ceased at bud maturation and cell scission. The cyclic changes in invertase production resulted in cyclic changes in amounts of invertase l...
متن کاملApple ripening-related cDNA clone pAP4 confers ethylene-forming ability in transformed Saccharomyces cerevisiae.
The apple ripening-related cDNA insert of clone pAP4 (G.S. Ross, M.L. Knighton, M. Lay-Yee [1992] Plant Mol Biol 19: 231-238) has previously been shown to have considerable nucleic acid and predicted amino acid sequence similarity to the insert of a tomato ripening-related cDNA clone (pTOM13) that is known to encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase (A.J. Hamilton, G.W....
متن کاملApple Ripening - Related cDNA Clone pAP 4 Confers Ethylene - Forming Ability in Transformed Saccharomyces cerevisiae ’ lan
l h e apple ripening-related cDNA insert of clone pAP4 (C.S. ROSS, M.L. Knighton, M. Lay-Yee [1992] Plant MOI Biol 19: 231238) has previously been shown to have considerable nucleic acid and predicted amino acid sequence similarity to the insert of a tomato ripening-related cDNA clone (pTOM13) that i s known to encode the enzyme I-aminocyclopropane-I-carboxylate (ACC) oxidase (A.J. Hamilton, C....
متن کامل